МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ: СИНТЕЗ И ПРИМЕНЕНИЕ - определение. Что такое МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ: СИНТЕЗ И ПРИМЕНЕНИЕ
Diclib.com
Словарь онлайн

Что (кто) такое МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ: СИНТЕЗ И ПРИМЕНЕНИЕ - определение

СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Синтез, в математике; Синтез в математике; Синтез в психологии и логике

МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ: СИНТЕЗ И ПРИМЕНЕНИЕ      
К статье МЕТАЛЛООРГАНИЧЕСКИЕ СОЕДИНЕНИЯ
Синтез. Металлоорганические соединения щелочных металлов и магния широко используются как реагенты в органическом синтезе. Их можно приготовить в виде эфирных растворов по реакциям типа (1) и (2):
Смешанные магнийорганические соединения типа RMgX, где X = Cl, Br или I, известны под названием "реактивы Гриньяра" по имени французского химика В.Гриньяра, разработавшего условия их применения для органического синтеза (впервые их получил в 1899 Ф.Барбье - учитель Гриньяра). Реактивы Гриньяра вступают в многочисленные реакции и могут быть использованы, в частности, для синтеза других металлоорганических соединений, например:
и
Литийорганические соединения типа RLi широко применяются в фармацевтической промышленности для получения разнообразных органических соединений. Примером может служить синтез P(CH3)3:
Алюминийорганические соединения можно получить по реакции типа:
Применение. Относительно немногие металлоорганические соединения используются как таковые; это, в основном, . кремнийорганические соединения (см. также КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ) и тетраэтилсвинец Pb(C2H5)4, применявшийся как антидетонатор для бензина (см. также НЕФТЬ И ГАЗ). Оловоорганические соединения используются в красках, препятствующих биологическому обрастанию судов и подводных сооружений, и как катализаторы в производстве некоторых пластмасс. Ртутьорганические соединения применялись в сельском хозяйстве в качестве фунгицидов, но их использование запрещено во многих странах по экологическим соображениям, т.к. ртутьорганические соединения превращаются микроорганизмами в водорастворимый и токсичный ион метилртути CH3Hg+ (послуживший причиной экологического бедствия в Минамате в Японии). В природе важную роль играет витамин B12, кобальторганическое соединение, дефицит которого в организме приводит к анемии; его действие, по-видимому, заключается в переносе органических групп путем образования Co-C-связей (см. также ПЛАСТМАССЫ; ВИТАМИНЫ).
Катализ. В промышленности большое значение имеют каталитические реакции, в которых металлоорганические соединения возникают в виде нестойких интермедиатов. Эти реакции могут протекать гомогенно в растворах или гетерогенно, с участием металлоорганических частиц на таких носителях, как оксид алюминия, силикагель или уголь (см. также КАТАЛИЗ). Ниже приводятся примеры катализируемых металлами реакций, имеющих важное промышленное значение.
Полимеризация олефинов. Полимеризация этилена и пропилена протекает с участием каталитической смеси алкилалюминия и хлорида титана. Катализаторы этого типа называются катализаторами Циглера - Натта, так как процесс был разработан К.Циглером (ФРГ) и Д.Натта (Италия), которые получили в 1963 Нобелевскую премию за эту работу. Бутадиен и сходные непредельные соединения могут быть заполимеризованы в каучук в присутствии алкиллития или алкилнатрия.
Соединения молибдена и вольфрама катализируют родственную реакцию, называемую реакцией метатезиса (диспропорционирования) олефинов:
Гидрирование кратных связей. Эта важная реакция может быть гетерогенной или гомогенной. Гомогенная реакция с катализатором Уилкинсона RhCl3 применяется в фармацевтической промышленности; используя оптически активные фосфиновые лиганды, можно осуществить экономичный асимметрический синтез таких лекарственных средств, как L-ДОФА (L-3,4-дигидроксифенилаланин).
Родственная реакция, называемая гидросилилированием, состоит в присоединении триалкилсилана к олефину:
Реакции оксида углерода CO. Промышленный синтез на основе оксида углерода(II) проводят с участием кобальторганических или родийорганических промежуточных соединений, в которых ацильная группа связана с металлом, R-CO-M. Реакция состоит в превращении M-R в M-COR путем "внедрения" оксида углерода по связи углерод - металл. Соединение M-R в некоторых случаях можно получить по реакции гидрида металла с олефином, например:
Важное место в промышленном синтезе занимают реакция гидроксиформилирования (оксо-синтез):
продуктами которой являются альдегиды или спирты, и процесс Монсанто . превращение метанола в уксусную кислоту с участием иодида родия:
В этих процессах металлоорганические соединения возникают на поверхности катализатора как интермедиаты.
Реакции окисления. Многие реакции окисления органических соединений катализируются металлами, как, например, вакер-процесс - превращение этилена в ацетальдегид при помощи медно-палладиевого катализатора:
Интермедиатом в этом процессе служит этиленовый ?-комплекс, сходный с солью Цейзе.
Химический синтез         
Синтез химический; Синтез (химия); Синтез, в химии; Синтез в химии
Хими́ческий си́нтез — в узком смысле это процесс создания сложных молекул из более простых, или менее доступных молекул из более доступных. В широком смысле — это искусственное выполнение химических и физических реакций для получения одного или нескольких продуктов.
Синтез химический         
Синтез химический; Синтез (химия); Синтез, в химии; Синтез в химии

целенаправленное получение сложных веществ из более простых, основывающееся на знании молекулярного строения и реакционной способности последних. Обычно под синтезом подразумевается последовательность нескольких химических процессов (стадий).

В раннем периоде развития химии С. х. осуществлялся главным образом для неорганических соединений и носил случайный характер. Синтетическое получение сложных веществ стало возможным лишь после того, как были накоплены сведения об их составе и свойствах с развитием методов органического и физико-химического анализа. Принципиальное значение имели первые синтезы органических веществ - щавелевой кислоты и мочевины, осуществленные Ф. Вёлером в 1824 и 1828 (см. Органическая химия). Попытки синтеза аналогов сложных природных соединений, предпринятые в середине 19 в., когда стройной теории строения органических соединений не существовало, показали лишь принципиальную возможность синтеза таких веществ, как Жиры (П. Э. М. Бертло) и Углеводы (А. М. Бутлеров). Позднее уже на теоретической основе (см. Химического строения теория) были синтезированы индиго, камфора и другие сравнительно простые соединения, а также более сложные - некоторые углеводы, аминокислоты и пептиды. Начиная с 20-х гг. 20 в. плодотворное влияние на методологию С. х. оказали работы Р. Робинсона по получению ряда сложных молекул путями, имитирующими пути их образования в природе. С конца 30-х гг. наблюдается бурное развитие С. х. вначале в области стероидов, алкалоидов и витаминов, а затем в области изопреноидов, антибиотиков, полисахаридов, пептидов и нуклеиновых кислот. В 40-60-х гг. существенный вклад в развитие тонкого органического синтеза внёс Р. Б. Вудворд, осуществивший синтез ряда важных природных соединений (хинин, кортизон, хлорофилл, тетрациклин, витамин В 12 и др.). Примером больших успехов С. х. может служить также первый полный синтез гена аланиновой транспортной рибонуклеиновой кислоты (из дрожжей), осуществленный в 1970 Х. Г. Кораной (См. Корана) с сотрудниками.

Развитие органического синтеза происходит по следующим принципиальным направлениям производство важнейших промышленных продуктов (полимеров, синтетического топлива, красителей и пр.); получение различных физиологически активных веществ для медицины, сельского хозяйства, пищевой промышленности, парфюмерии; подтверждение строения сложных природных соединений и получение молекул с "необычным" строением для проверки и совершенствования теории органической химии; расширение арсенала реакций и методов С. х., включая использование катализаторов (См. Катализаторы), высоких энергий (см. Плазмохимия, Радиационная химия), а также более широкое использование (в строго контролируемых условиях) микроорганизмов и очищенных ферментов. В 70-е гг. появились работы по применению ЭВМ для целей оптимизации многостадийного С. х.

Разработка и совершенствование синтетических методов позволили получать многие важные химические продукты в промышленных масштабах. В неорганической химии (См. Неорганическая химия) - это синтезы азотной кислоты (См. Азотная кислота), Аммиака, серной кислоты (См. Серная кислота), соды (См. Сода), различных комплексных и других соединений. Налажено многотоннажное производство органических веществ, используемых в различных отраслях химической промышленности (см. Основной органический синтез), а также продуктов тонкого органического синтеза (гормонов, витаминов).

Лит.: Реутов О. А., Органический синтез, 3 изд., М., 1954; Перспективы развития органической химии, пер. с англ. и нем., под ред. А. Тодда, М., 1959; Крам Д., Хеммонд Дж., Органическая химия, пер. с англ., М., 1964. См. также лит. при статьях, ссылки на которые даны в тексте.

С. А. Погодин, Э. П. Серебряков.

Википедия

Синтез (значения)

Синтез (от греч. σύνθεσις — помещение вместе):